Top Conferences and Journals in Computer Vision and Machine Learning: CVPR, ICCV, NIPS, ICML, TPAMI, IEEE TIP, IJCV

Top Conferences in Biometrics: ICB, BTAS

Top Conferences in Image Processing and Signal Processing: ICIP, ICASSP

The Google Scholar Metrics for publication rankings.

Conference Deadlines: CVPR’19 (Nov. 16, 2018), ICCV’19, ICIP’19, BTAS’19, ICPR’19, NIPS’19, ICML’19

Conferences

K. G. Quach, P. Nguyen, H. Le, T. D. Truong, C. N. Duong, M. T. Tran and K. Luu, “DyGLIP: A Dynamic Graph Model with Link Prediction for Accurate Multi-Camera Multiple Object Tracking,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021 [IEEE/CVF] [Arxiv].

X. B. Nguyen, D. Toan. Bui, C. N. Duong, T. D. Bui and K. Luu, “Clusformer: A Transformer based Clustering Approach to Unsupervised Large-scale Face and Visual Landmark Recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021 [IEEE/CVF] [Arxiv].

C. Huynh, A. Tran, K. Luu and M. Hoai, “Progressive Semantic Segmentation,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021 [IEEE/CVF] [Arxiv].

N. Le, J. Sorensen, T. D. Bui, A. Choudhary, K. Luu and H. Nguyen,, “FAIRFLOW: Enhancing Portable Chest X-Ray by Flow-based Deformation for COVID-19 Diagnosing,” The 28th IEEE International Conference on Image Processing (IEEE – ICIP), Anchorage, Alaska, September 2021 [IEEE].

N. Le, T. Le, K. Yamazaki, T. Bui, K. Luu and M. Savides, “Offset Curves Loss for Imbalanced Problem in Medical Segmentation,” IEEE 25th International Conference on Pattern Recognition (ICPR), Pages 9189-9195, Milan, Jan. 2021 [IEEE] [Arxiv].

C. N. Duong, T. D. Truong, K. Luu, K. G. Quach, H. Bui and K. Roy, “Vec2Face: Unveil Human Faces From Their Blackbox Features in Face Recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 6132-6141, Virtual, June 2020. [IEEE/CVF] [Poster] [Video] (ORAL)

T. D. Bui, M. Nguyen, N. Le and Khoa Luu, “Flow-Based Deformation Guidance for Unpaired Multi-contrast MRI Image-to-Image Translation,” Medical Image Computing and Computer Assisted Intervention (MICCAI), Pages 728-737, Virtual, Sep. 2020 [Springer] [Arxiv].

D. T. Truong, C. N. Duong, K. Luu, M. T. Tran and N. Le, “Domain Generalization via Universal Non-volume Preserving Approach,” IEEE 17th Conference on Computer and Robot Vision (CRV), Pages 93-100, Virtual, May 2020 [IEEE] [Poster].

C. N. Duong, K. Luu, K. G. Quach, N. Nguyen, E. Patterson, T. D. Bui and T. H. N. Le, “Automatic Face Aging in Videos via Deep Reinforcement Learning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 10013-10022, Long Beach, June 2019. [IEEE/CVF] [Arxiv] [Poster] [AGFW-v2 Database] [Project Website] [F@ST COMPANY NEWS]

C. N. Duong, K. G. Quach, I. Jalata, T. H. N. Le and K. Luu,MobiFace: A Lightweight Deep Learning Face Recognition on Mobile Devices,” Pages 1-8, IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, Sep. 2019 [IEEE] [Arxiv].

A. Dendukuri and K. Luu, “Image Processing in Quantum Computers,” Quantum Techniques in Machine Learning (QTML), Daejeon, Oct. 2019.

A. Dendukuri, B. Keeling, J. Burbridge, K. Luu and H. Churchill,Defining Quantum Neural Networks via Quantum Time Evolution,” Quantum Techniques in Machine Learning (QTML), Daejeon, Oct. 2019.

C. Zhu, Y. Ran, K. Luu and M. Savvides,Seeing Small Faces from Robust Anchor’s Perspective,” Pages 5127-5136, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Utah, June 2018. [IEEE/CVF] [Arxiv] [Poster] [SOTA Result on WiderFace Benchmark]

T. D. Bui, K. G. Quach, C. N. Duong and K. Luu,Lp Norm Relaxation Approach for Large Scale Data Analysis: A Review,” International Conference Image Analysis and Recognition (ICIAR), pages 285-292, Portugal, 2018 [Springer].

C. Zhu, Y. Zheng, K. Luu and M. Savvides,Enhancing Interior and Exterior Deep Facial Features for Face Detection in the Wild,” IEEE International Conference on Automatic Face and Gesture Recognition (FG), Pages 1-8, Xi’an, May 2018 [IEEE].

C. N. Duong, K. G. Quach, K. Luu, T. H. N. Le and M. Savvides,Temporal Non-Volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,” IEEE International Conference on Computer Vision (ICCV), Pages 3755-3763, Venice, Oct. 2017 [IEEE/CVF] [Arxiv]  [Slides] [Video]  (Oral)

C. Bhagavatula, C. Zhu, K. Luu and M. Savvides,Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,” IEEE International Conference on Computer Vision (ICCV), Pages 3980-3989, Venice, Oct. 2017 [IEEE/CVF] [Arxiv]

C. Zhu, Y. Zheng, K. Luu and M. Savvides,CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection,” June 2016 [Arxiv].

C. N. Duong, K. Luu, K. G. Quach and T. D. Bui,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vegas, June 2016 [IEEE] [Arxiv].

K. G. Quach, C. N. Duong, K. Luu and T. D. Bui,Robust Deep Appearance Models,” International Conference on Pattern Recognition (ICPR), Pages 1-8, Cancun, Dec. 2016 [IEEE] [Arxiv].

H. N. Le, C. Zhu, Y. Zheng, K. Luu and M. Savvides,Robust Hand Detection in Vehicles,” International Conference on Pattern Recognition (ICPR), Pages 1-8, Cancun, Dec. 2016 [IEEE] [Arxiv] [SOTA Results in VIVA Benchmark].

C. N. Duong, K. Luu, K. G. Quach and T. D. Bui,Beyond Principal Components: Deep Boltzmann Machines for Face Modeling,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 4786-4794, Boston, June 2015 [IEEE/CVF].

K. G. Quach, C. N. Duong, K. Luu and T. D. Bui,Depth-based 3D Hand Pose Tracking,” Intl. Conf. on Pattern Recognition (ICPR), Pages 2747-2752, Cancun, Dec. 2016 [IEEE] [PDF].

Y. Zheng, C. Zhu, K. Luu, H. N. Le, C. Bhagavatula and M. Savvides,Towards a Deep Learning Framework for Unconstrained Face Detection,” IEEE 8th Intl. Conference on Biometrics: Theory, Applications and Systems (BTAS), Buffalo, NY, Sep. 2016 [IEEE] [Arvix] [third-party code].

C. Zhu, Y. Zheng, K. Luu, H. N. Le, C. Bhagavatula and M. Savvides,Weakly Supervised Facial Analysis with Dense Hyper-column Features,” IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Biometrics Workshop, Pages 25-33, Vegas, June 2016 [IEEE/CVF] [PDF].

H. N. Le, K. Luu, C. Zhu, Y. Zheng and M. Savvides,Multiple Scale Faster-RCNN Approach to Driver’s Cell-phone Usage and Hands on Steering Wheel Detection,” IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Computer Vision in Vehicle Technology, Pages 46-53, Vegas, June 2016 [IEEE/CVF] [PDF].

H. N. Le, K. Luu and M. Savvides, “Fast and Robust Self-Training Beard/Moustache Detection and Segmentation,” IEEE Intl. Conf. on Biometrics (ICB), Pages 507-512, Phuket, May 2015 [IEEE] [PDF].

R. Aljadaany, K. Luu, S. Venugopalan and M. Savvides, “Iris Super-resolution via Nonparametric Over-complete Dictionary Learning,” IEEE Intl. Conf. on Image Processing (ICIP), Quebec, Canada, Sept. 2015 [pdf].

K. Singh, K. Luu, H. N. Le and M. Savvides, “A Robust Contour Sampling and Tensor-based Approach to Facial Beard and Mustache Shape Segmentation and Matching,” IEEE Intl. Conf. on Image Processing (ICIP), Quebec, Canada, Sept. 2015 [pdf].

K. G. Quach, C. N. Duong, K. Luu and T. D. Bui, “Robust Lp-norm Singular Value Decomposition,” Non-convex Optimization for Machine Learning Workshop, NIPS, Montreal, Canada, 2015.

K. Luu, C. Zhu and M. Savvides, “Distributed Class Dependent Feature Analysis – A Big Data Approach,” IEEE International Conference on Big Data (ICBD), DC, 2014.

H. N. Le, K. Luu, K, Singh and M. Savvides, “A Robust Monte Carlo and Tensor-based Shape Context Matching Approach to Facial Beard/Moustache Ranking and Retrieval,” Neural Information Processing Systems (NIPS), Workshop, Montreal 2014.

K. Luu, M. Savvides, T.D.Bui and C.Y.Suen, “Compressed Submanifold Multifactor Analysis with Adaptive Factor Structures,” Intl. Conf. on Pattern Recognition (ICPR), 2012.

K. Luu, H. N. Le, K. Seshadri and M. Savvides, FaceCut – A Robust Approach for Facial Feature Segmentation,” IEEE Intl. Conf. on Image Processing (ICIP), Orlando, US., Sept. 2012.

H. N. Le, K. Luu, K. Seshadri and M. Savvides, Beard and Mustache Segmentation using Sparse Classifiers on Self-Quotient Images,” IEEE Intl. Conf. on Image Processing (ICIP), Orlando, US., Sept. 2012.

H. N. Le, K. Luu, U. Prabhu and M. Savvides, A Novel Energy based Filter for Cross-Blink Eye Detection,” IEEE Intl. Conf. on Image Processing (ICIP), Orlando, US., Sept. 2012.

H. N. Le, K. Luu, K. Seshadri and M. Savvides, A Facial Aging Approach to Identification of Identical Twins,” IEEE Fifth Intl. Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington DC, Sep. 2012.

Y. Xie, K. Luu and M. Savvides, A Robust Approach to Facial Ethnicity Classification on Large Scale Face Databases,” IEEE Fifth Intl. Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington DC, Sep. 2012.

S. Bendapudi, K. Luu and M. Savvides, Hallucinating Faces in the Dark,” IEEE Fifth Intl. Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington DC, Sep. 2012. [Best Paper Awards]

K. G. Quach, C. N. Duong, K. Luu and H. B. Le,Gabor Wavelet-Based Appearance Models,” The 9th IEEE-RIVF Intl. Conf. on Computing and Communication Tech., Vietnam, 2012.

K. Luu, K. Seshadri, M. Savvides, T. D. Bui and C. Y. Suen, “Contourlet Appearance Model for Facial Age Estimation,” Intl. Joint Conf. on Biometrics (IJCB), Washington D.C., Oct. 2011.

J. Xu, K. Luu, M. Savvides, T. D. Bui and C. Y. Suen, “Investigating Age Invariant Face Recognition Based on Periocular Biometrics,” Intl. Joint Conf. on Biometrics (IJCB), Washington D.C., Oct. 2011. [Best Paper Awards]

C. N. Duong, K. G. Quach, K. Luu, H. B. Le and K. Ricanek, “Fine Tuning Age Estimation with Global and Local Facial Features,” The 36th Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 2011.

K. Luu, T. D. Bui and C. Y. Suen, “Kernel Spectral Regression of Perceived Age from Hybrid Facial Features,” The 9th IEEE Conf. on Automatic Face and Gesture Recognition (FG), Santa Barbara, US., Mar. 2011.

C. Chen, W. Yang, Y. Wang, K. Ricanek and K. Luu, “Facial Feature Fusion and Model Selection for Age Estimation,” The 9th IEEE Conf. on Automatic Face and Gesture Recognition (FG), Santa Barbara, US., Mar. 2011.

K. Luu, T. D. Bui, C. Y. Suen and K. Ricanek, “Spectral Regression based Age Determination,” IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) on Biometrics, San Francisco, 2010.

K. Luu, T. D. Bui, C. Y. Suen and K. Ricanek Jr. , “Combined Local and Holistic Facial Features for Age Determination,” 11th Intl. Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2010.

K. Luu, “Computer Approaches for Face Aging Problems,” The 23th Canadian Conference on Artificial Intelligence (CAI), Ottawa, Canada, 2010.

K. Luu, T. D. Bui, K. Ricanek Jr. and C. Y. Suen, “Age Estimation using Active Appearance Models and Support Vector Machine Regression,” IEEE Third Intl. Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington DC, Sep. 2009.

K. Luu, C. Y. Suen, T. D. Bui and K. Ricanek Jr., “Automatic Child – Face Age – Progression Based on Heritability Factors of Familial Faces,” The first IEEE Intl. Conf. on Biometrics, Identity and Security (Bids), Florida, Sep. 2009.

K. Luu, K. Ricanek Jr., T.D.Bui and C.Y.Suen, “The Familial Face Database: A Longitudinal Study of Family-based Growth and Development on Face Recognition,” Robust Biometrics: Understanding Science & Technology (ROBUST), IEEE EAB, Hawaii, Nov. 2008.

Journals and Book Chapters

N. Le, V. Rathour, K. Yamazaki, K. Luu and M. Savvides, Active Contour Model in Deep Learning Era: A Revise and Review,” Artificial Intelligence Review, April 2021 (Accepted)

X. Li, J. Liu, J. Baron, K. Luu and E. Patterson, Evaluating Effects of Focal Length and Viewing Angle in a Comparison of Recent Face Landmark and Alignment Methods,” EURASIP Journal on Image and Video Processing, Num. 9, March 2021.

T. H. N. Le, K. Luu, C. N. Duong, K. G. Quach, T. D. Truong, K. Sadler and M. Savvides, Active Contour Model in Deep Learning Era: A Revise and Review,” Applications of Hybrid Metaheuristic Algorithms for Image Processing, Pages 231-260, March 2020 [Book Chapter].

D. M.Ford, A. Dendukuri, G. Kalyoncu, K. Luu and M. J.Patitz, Machine Learning to Identify Variables in Thermodynamically Small Systems,” Journal of Computers & Chemical Engineering, Vol. 141, N. 4, Oct 2020 [ScienceDirect]. (IF: 4.0)

J. Cardoso, H. V. Nguyen, N. Heller, P. H. Abreu, I. Isgum, W. Silva, R. Cruz, J. P. Amorim, V. Patel, B. Roysam, K. Zhou, S. Jiang, N. Le, K. Luu, R. Sznitman, V. Cheplygina, D. Mateus, E. Trucco, S. Abbasi,Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, iMIMIC 2020, Second International Workshop, MIL3iD 2020, and 5th International Workshop, LABELS 2020,” Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020 [Springer Nature]

C. N. Duong, K. Luu, K. G. Quach and T. D. Bui, Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,” International Journal of Computer Vision (IJCV), Pages 437-455, Vol. 127, May 2019 [SpringerLink] [Arxiv]. (IF: 11.541)

C. N. Duong, K. G. Quach, K. Luu, T. H. N. Le and M. Savvides,Learning from Longitudinal Face Demonstration – Where Tractable Deep Modeling Meets Inverse Reinforcement Learning,” International Journal of Computer Vision (IJCV), Pages 1 – 15, Feb. 2019 [SpringerLink][Arxiv]. (IF: 11.541)

Q. Wang, F. Milletari, H. V. Nguyen, S. Albarqouni, M. J. Cardoso, N. Rieke, Z. Xu, K. Kamnitsas, V. Patel, B. Roysam, S. Jiang, K. Zhou, K. Luu and N. Le,Domain adaptation and representation transfer and medical image learning with less labels and imperfect data,” The First MICCAI workshop, dart 2019, and first International workshop, MIL3ID 2019, Shenzhen, held in conjunction with MICCAI, 2019 [Springer Nature]

H. V. Nguyen, V. Patel, N. Le, B. Roysam, S. Jiang, K. Zhou and K. Luu,MIL3ID 2019 preface,” Lecture Notes in Computer Science, 2019 [Lecture Notes]

T. H. N. Le, K. Luu, M. Savvides, K. G. Quach and C. N. Duong, Recurrent Level Set Networks for Instance Segmentation,” Pattern Recognition-Selected Methods and Applications,  July 2019 [Book Chapter]

T. D. Truong, C. N. Duong, K. Luu and M. T. Tran, Recognition in Unseen Domains: Domain Generalization via Universal Non-volume Preserving Models,” CoRR,  July 2019

H. N. Le, K. G. Quach, K. Luu and M. Savvides, Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation,” IEEE Trans. on Image Processing (TIP), Vol 27 , Issue 5 , Pages 2393 – 2407, May 2018 [IEEE] [Arvix]. (IF: 5.071)

H. N. Le, C. N. Duong, K. Luu and M. Savvides, Deep Contextual Recurrent Residual Networks for Scene Labeling,” Journal of Pattern Recognition (JPR), Vol 80, Pages 32-41 , August 2018 [ScienceDirect] [Arxiv]. (IF: 3.962)

K. Luu, M. Savvides, T.D.Bui and C.Y.Suen, “Compressed Submanifold Multifactor Analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), Vol. 39, Issue 3, Pages 444-456, March 2017 [IEEE]. (IF: 9.455)

H. N. Le, K. Luu, C. Zhu, Y. Zheng and M. Savvides, DeepSafeDrive: A Grammar-aware Driver Parsing Approach to Driver Behavioral Situational Awareness (DB-SAW),” Journal of Pattern Recognition (JPR), Vol.66, Pages 229-238, 2017 [ScienceDirect] [Arxiv]. (IF: 3.962)

H. N. Le, K. Luu, C. Zhu, Y. Zheng and M. Savvides, Semi Self-training Beard/Moustache Detection and Segmentation Simultaneously,” Journal of Image and Vision Computing (JIVC), Vol. 58, Pages 214-223, February 2017 [ScienceDirect].

K. G. Quach, C. N. Duong, K. Luu and T. D. Bui, “Non-convex Robust PCA: Enhance Sparsity via Lp-norm Minimization,” Journal of Computer Vision and Image Understanding (CVIU), Vol. 158, Pages 126-140, May 2017 [ScienceDirect] [Source Code]. (IF: 2.391)

Y. Zheng, C. Zhu, K. Luu and M. Savvides,Multiple-scale Region-based Convolutional Neural Network Approach to Robust Face Detection in the Wild,” Book Chapter, Deep Learning for Biometrics, Springer, 2017 [Springer].

H. N. Le, K. Luu, C. Zhu and M. Savvides, Semi Self-Training Beard/Moustache Detection and Segmentation Simultaneously,” Journal of Image and Vision Computing, Special Issue “The Best of Biometrics 2015”, Vol. 58, Pages 214-223, Feb. 2017 [ScienceDirect].

H. N. Le, K. Seshadri, K. Luu and M. Savvides, Facial Aging and Asymmetry Decomposition Based Approaches to Identification of Twins,” Journal of Pattern Recognition (JPR), Vol. 48, Issue 12, Pages 3843–3856, Dec. 2015 [ScienceDirect]. (IF: 3.962)

F. Xu, K. Luu and M. Savvides, Spartans: Single-sample Periocular-based Alignment-robust Recognition Technique Applied to Non-frontal Scenarios,” IEEE Trans. on Image Processing (TIP), Vol. 24, Issue 12, Pages 4780-4795, Dec. 2015 [IEEE]. (IF: 5.071)

H. N. Le, K. Luu and M. Savvides, SparCLeS: Dynamic L1 Sparse Classifiers with Level Sets for Robust Beard/Moustache Detection and Segmentation,” IEEE Trans. on Image Processing (TIP), Vol. 22, issue 8, Pages 3097-3107, 2013 [IEEE]. (IF: 5.071)

K. Luu, H. B. Le, H. N. Le, “Audio Watermarking using Psychoacoustic Auditory Model and Spread Spectrum Theory,” Post, Telecommunications and Information Technology Journal, Vietnam, April 2006.

Patents

C. Bhagavatula, K. Luu, M. Savvides and C. Zhu, “3D Spatial Transformer Network,” United States Patent US 10755145 B2, 08/2020. [Patent]

M. Savvides, K. Luu, Y. Zheng and C. Zhu, “Methods and Software for Detecting Objects in Images using a Multiscale Fast Region-based Convolutional Neural Network,” United States Patent US 10354362 B2, 07/2019. [Patent]

M. Savvides, K. Luu and C. Zhu, “Methods and Software for Detecting Objects in an Image using a Contextual Multiscale Fast Region-based Convolutional Neural Network,” United States Patent US 10354159 B2, 07/2019. [Patent]

K. Luu, K. Seshadri and M. Savvides, “Face Age-Estimation and Methods, Systems, and Software Therefor“, United States Patent US 20140099029 A1, 04/2014.

– M. Savvides, Z. Chenchen and K. Luu, “Very DeepNet Contextual CNN for Object Detection and Recognition,” Carnegie Mellon University, 07/2016. (CMU Invention Disclosure)

– M. Savvides, K. Luu and Y. Zheng, “Large-scale Face Recognition via Deep Learning,” Carnegie Mellon University, 02/2016. (CMU Invention Disclosure)

– S. Bendapudi, K. Luu and M. Savvides, “A New Illumination Approach to Face Image Relighting,” Carnegie Mellon University, 2012. (CMU Invention Disclosure)

– H. N. Le, K. Luu and M. Savvides, “SparCLeS: Dynamic L1 sparse Classifiers with Level Sets for Robust Beard.Moustache Detection and Segmentation,” Carnegie Mellon University, 2013. (CMU Invention Disclosure)

In the Pipeline

A. Dendukuri and K. Luu,Image Processing in Quantum Computers,[Technical Report]

A. Dendukuri, B. Keeling, A. Fereidouni, J. Burbridge, K. Luu and H. Churchill,Defining Quantum Neural Networks via Quantum Time Evolution,[Technical Report]

S. K. Zhou, N. Le, K. Luu, H. V. Nguyen and N. Ayache, “Deep reinforcement learning in medical imaging: A literature review[Technical Report]

T. D. Truong, K. Luu, C. N. Duong, N. Le and M. T. Tran, “Image Alignment in Unseen Domains via Domain Deep Generalization[Technical Report]

C. N. Duong, K. G. Quach, K. Luu and T. D. Bui,Longitudinal Face Aging in the Wild – Recent Deep Learning Approaches,[Technical Report]

C. N. Duong, K. Luu, K. G. Quach, N. Le,ShrinkTeaNet: Million-scale Lightweight Face Recognition via Shrinking Teacher-Student Networks, [Technical Report]

T. D. Truong, C. N. Duong, K. G. Quach, D. Nguyen, N. Le, K. Luu and T. D. Bui,Beyond Disentangled Representations: An Attentive Angular Distillation Approach to Large-scale Lightweight Age-Invariant Face Recognition, [Technical Report]

K. G. Quach, C. N. Duong, K. Roy, T. H. N. Le and K. Luu, “Non-Volume Preserving-based Feature Fusion Approach to Group-Level Expression Recognition on Crowd Videos,” Journal of Pattern Recognition (JPR), May 2021 [Under Review].

T. D. Truong, C. N. Duong  and K. Luu, “LIAAD: Lightweight Attentive Angular Distillation for Large-scale Age-Invariant Face Recognition,” Journal of Pattern Recognition (JPR), May 2021 [Under Review].

T. D. Truong, C. N. Duong  and K. Luu, “OTAdapt: Optimal Transport-based Approach For Unsupervised Domain Adaptation,” Journal of Pattern Recognition Letters (JPR), Future Internet, MDPI, May 2021 [Under Review].

I. Jalata, T. D. Truong, J. Allen and K. Luu, “Movement Analysis for Neurological and Musculoskeletal Disorders Using Graph Convolutional Neural Network,” 2021 [Under Review].

M. H. Phan, S. L. Phung, K. Luu and A. Bouzerdoum, “Efficient Hyperspectral Image Segmentation for Biosecurity Scanning Using Multi-head Knowledge Distillation,” ICCV 2021 [Under Review].

P. Nguyen, K. G. Quach, C. N. Duong, N. Le and K. Luu, “GaGLIP: Global Association Graph with Link Prediction Approach to Multi-Camera 3D Multiple Object Tracking for Autonomous Vehicles,” ICCV 2021 [Under Review].

T. D. Truong, C. N. Duong, N. Le, S. L. Phung, C. Rainwater and K. Luu, “BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation,” ICCV 2021 [Under Review].

T. D. Truong, C. N. Duong, T. D. Vu, H. A. Pham, B. Raj, N. Le and K. Luu, “The Right to Talk: An Audio-Visual Transformer Approach,” ICCV 2021 [Under Review].

X. B. Nguyen, D. T. Bui, D. Nguyen, C. N. Duong and K. Luu, “Tailess-Transformer: A Cross-Correlation Attention Approach to Unsupervised Large-scale Long-Tailed 3D Object Detection” ICCV 2021 [Under Review].

H. A. Pham, C. N. Duong, S. L. Phung, N. Le and K. Luu, “Unsupervised Bird’s Eye View Reconstruction from FishEye Cameras without Bells and Whistles,” ICCV 2021 [Under Review].

K. G. Quach, P. Nguyen, C. N. Duong, S. L. Phung, N. and K. Luu, “FOTA-Track: Fractionally Optimal Transport Tracking Approach to Muti-Sensors on the Move,” NeurIPS 2021 [Under Review].